Long time effects of parent’s diet and “reminder” programming effect of 16 month juveniles

Presented as a poster in Epiconcept Cost Action’s workshop Periconception Environment

26-29 April 2015, Dubrovnik, Croatia

Screen Shot 2015-05-06 at 21.54.28

Nutritional programming is widely studied in vertebrates and it has been shown that nutritional stimuli during developmental stages may trigger short or/and longterm effects on several physiological functions of the organism. Studies about nutritional programming on different fish species also showed that functioning of certain metabolic pathways involved in lipid and carbohydrate metabolism of juveniles may be influenced by an early diet. Our research on sea bream revealed that nutritional programming through broodstock nutrition is very effective and improves the ability of 4 month juveniles to use vegetable oils (VO) and vegetable meals (VM). However, it is still unknown longer term effects of this type of programming. The present study examined the longterm influences of programming through broodstock nutrition in 16 month juveniles. Therefore, sea bream broodstock were fed four different replacement levels of fish oil (FO) by VO. FO replacement by VO affected growth of 45 day and 4 month-old juveniles, as well as Δ6 desaturase gene expression. Besides, when 4 month-old juveniles were fed with a VO-VM based diet, fish from broodstock fed VOs utilized more effectively this diet and showed a higher growth. Afterwards, all fish were fed with a standard fishmeal/FO based commercial diet for 16 months. Then, fish were challenged with a VM/VO based diets for 2 months. The results showed that the influence of parental feeding had disappeared on 16 month-old fish. However, those fish that were challenged at 4th month with a VM-VO based diet significantly showed the effect of parental feeding, suggesting that the nutritional challenge at 4 months may acted as a “reminder” effect added of the parental programming. Furthermore, long effects of nutritional programing and a remainder diet on fatty acids and gene expression involved in lipid metabolism were studied. Grant support:European Commission Directorate for Research & Innovation Grant A KBBE-2001-5-288925 (ARRAINA)

Meeting’s web page

Recent Comments

    Leave a Reply

    Your email address will not be published. Required fields are marked *